

DESCRIPTION — The SN54LS/74LS95B is a 4-Bit Shift Register with serial and parallel synchronous operating modes. The serial shift right and parallel load are activated by separate clock inputs which are selected by a mode control input. The data is transferred from the serial or parallel D inputs to the Q outputs synchronous with the HIGH to LOW transition of the appropriate clock input.

The LS95B is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- SYNCHRONOUS, EXPANDABLE SHIFT RIGHT
- SYNCHRONOUS SHIFT LEFT CAPABILITY
- SYNCHRONOUS PARALLEL LOAD
- SEPARATE SHIFT AND LOAD CLOCK INPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION **EFFECTS**

SN74LS95B

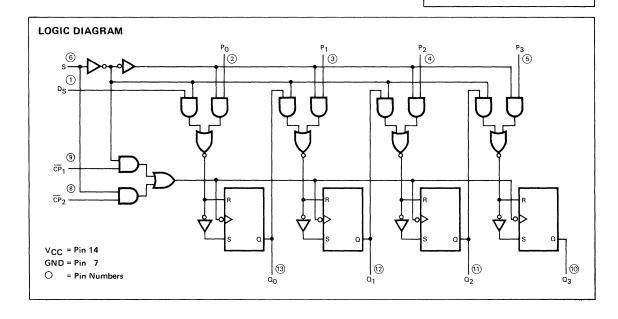
SN54LS95B

4-BIT SHIFT REGISTER

LOW POWER SCHOTTKY

PIN NAMES LOADING (Note a) HIGH LOW Mode Control Input 0.5 U.L. 0.25 U.L. Serial Data Input 0.5 U.L. 0.25 U.L. D_{S} 0.5 U.L. 0.25 U.L. Parallel Data Inputs Serial Clock (Active LOW Going Edge) Input 0.5 U.L. 0.25 U.L. \overline{CP}_2 Parallel Clock (Active LOW Going Edge) Input 0.5 U.L. 0.25 U.L. - Q3 Parallel Outputs (Note b) 10 U.L. 5(2.5)U.L. a_0 -

NOTES:


- 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.
 The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

CONNECTION DIAGRAM DIP (TOP VIEW) 2 ☐ Po Q₀ 13 Q₁ 12 4 □ P2 Q_2 **1**11 5 P3 o_3 10 6∐S CP. <u></u>□9 $\overline{\mathtt{CP}}_2$ 7 GND $V_{CC} = Pin 14$ GND = Pin 7 J Suffix — Case 632-07 (Ceramic)

N Suffix - Case 646-05 (Plastic)

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package

FUNCTIONAL DESCRIPTION — The LS95B is a 4-Bit Shift Register with serial and parallel synchronous operating modes. It has a Serial (DS) and four Parallel ($P_0 - P_3$) Data inputs and four Parallel Data outputs ($Q_0 - Q_3$). The serial or parallel mode of operation is controlled by a Mode Control input (S) and two Clock Inputs ($\overline{\text{CP}}_1$) and ($\overline{\text{CP}}_2$). The serial (right-shift) or parallel data transfers occur synchronous with the HIGH to LOW transition of the selected clock input.

When the Mode Control input (S) is HIGH, \overline{CP}_2 is enabled. A HIGH to LOW transition on enabled \overline{CP}_2 transfers parallel data from the P_0 — P_3 inputs to the Q_0 — Q_3 outputs.

When the Mode Control input (S) is LOW, \overline{CP}_1 is enabled. A HIGH to LOW transition on enabled \overline{CP}_1 transfers the data $from Serial input (D_S) to Q_0 and shifts the data in Q_0 to Q_1, Q_1 to Q_2, and Q_2 to Q_3 respectively (right-shift). A left-shift of the contraction of the con$ is accomplished by externally connecting Q₃ to P₂, Q₂ to P₁, and Q₁ to P₀, and operating the LS95B in the parallel mode (S = HIGH).

For normal operation, S should only change states when both Clock inputs are LOW. However, changing S from LOW to HIGH while $\overline{\text{CP}}_2$ is HIGH, or changing S from HIGH to LOW while $\overline{\text{CP}}_1$ is HIGH and $\overline{\text{CP}}_2$ is LOW will not cause any changes on the register outputs.

MODE SELECT - TRUTH TABLE

OPERATING MODE			INPUTS	;	OUTPUTS					
OF ENATING MODE	s	CP ₁	CP ₂	DS	Pn	σ0	01	a_2	σ^3	
Shift	L	Z.	х	1	×	L	q ₀	q ₁	q 2	
	L	l	×	h	×	н	q ₀	91	q ₂	
Parallel Load	Н	х	1	Х	Pn	P ₀	P ₁	p ₂	p ₃	
	l	L	L	×	×	No Change				
	7	L	L	×	×	No Change				
	L	Н	L	×	×		No Change			
Mode Change	1	н	L	x	x	Undetermined				
	1	L	н	×	×	Undetermined				
	1	L	н	×	x	No Change				
	l	н	н	×	x	Undetermined				
	1	н	н	×	x	No Change				

L = LOW Voltage Level

HIGH Voltage Level

Don't Care

I = LOW Voltage Level one set-up time prior to the HIGH to LOW clock transition.
h = HIGH Voltage Level one set-up time prior to the HIGH to LOW clock transition.

 p_n = Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH to LOW clock transition.

GUARANTEED OPERATING RANGES

SYMBOL	PARAMETER		MIN	TYP	MAX	UNIT
Vcc	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	٧
ТА	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	∘c
loн	Output Current — High	54,74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

CVMADOL	DADAMETER	PARAMETER		LIMITS			TEST COMPITIONS	
SYMBOL	PARAMETER			TYP	MAX	UNITS	TEST CONDITIONS	
VIH	Input HIGH Voltage		2.0			٧	Guaranteed Inp All Inputs	ut HIGH Voltage for
	54			0.7		Guaranteed Input LOW Voltage for		
VIL	IL Input LOW Voltage	74			0.8	V All Inputs		
VIK	Input Clamp Diode Volt	age		-0.65	-1.5	٧	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
VOH Output HIGH Voltage	54	2.5	3.5		V	$V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{I}$		
	Output Filori Voltage	74	2.7	3.5		٧	or V _{IL} per Truth Table	
		54,74		0.25	0.4	٧	$I_{OL} = 4.0 \text{ mA}$	$V_{CC} = V_{CC} MIN,$
VOL	Output LOW Voltage	74		0.35	0.5	٧	$I_{OL} = 8.0 \text{ mA}$	VIN = VIL or VIH per Truth Table
	Input HIGH Current				20	μΑ	$V_{CC} = MAX, V_I$	N = 2.7 V
liH					0.1	mA	$V_{CC} = MAX, V_{IN} = 7.0 \text{ V}$	
ال	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _I	N = 0.4 V
los	Short Circuit Current		-20		-100	mA	V _{CC} = MAX	
lcc	Power Supply Current				21	mA	$V_{CC} = MAX$	

AC CHARACTERISTICS: $T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$

SYMBOL	DADAMETED		LIMITS		UNITS	TEST CONDITIONS	
STIVIBUL	PARAMETER	MIN	TYP	MAX			
fMAX	Maximum Clock Frequency	25	36		MHz	V _{CC} = 5.0 V	
^t PLH	CP to Output		18	27	ns	$C_{i} = 15 \text{ pF}$	
^t PHL			21	32	ns		

AC SETUP REQUIREMENTS: $T_A = 25^{\circ}C$, $V_{CC} = 5.0 \text{ V}$

SYMBOL	DADAMETER.		LIMITS		LINITO	TEST CONDITIONS	
	PARAMETER	MIN	TYP	MAX	UNITS		
tW	CP Pulse Width	20			ns		
t _S	Data Setup Time	20			ns		
th	Data Hold Time	20			ns	V _{CC} = 5.0 V	
t _S	Mode Control Setup Time	20			ns		
th	Mode Control Hold Time	20			ns		

DESCRIPTIONS OF TERMS:

SETUP TIME (t_S) — is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH to LOW in order to be recognized and transferred to the outputs.

HOLD TIME (t_h) — is defined as the minimum time following the clock transition from HIGH to LOW that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from HIGH to LOW and still be recognized.

AC WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

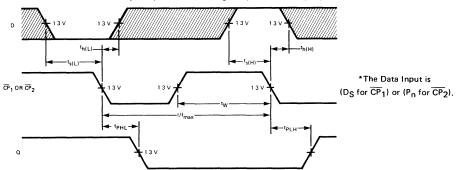
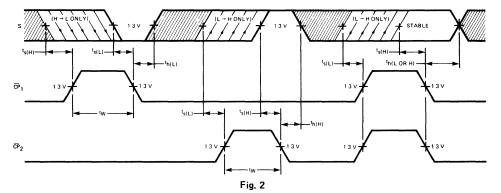



Fig. 1

