TTL MSI PARALLEL-IN SERIAL-OUT REGISTERS for application as

- Dual-Source, Parallel-To-Serial Converter

description

These monolithic shift registers which utilize tran-sistor-transistor logic (TTL) circuits in the familiar Series 54/74 configuration, are composed of four R-S master-slave flip-flops, four AND-OR-INVERT gates, and four inverter-drivers. Internal interconnections of these functions provide a versatile register which performs right-shift operations as a serial-in, serial-out register or as a dual-source, parallel-to-serial converter. A number of these registers may be connected in series to form an n-bit register.
All flip-flops are simultaneously set to a low output level by applying a high-level voltage to the clear input while the internal presets are inactive (high). See the preset function table below. Clearing is independent of the level of the clock input.
The register may be parallel loaded by using the clear input in conjunction with the preset inputs. After clearing all stages to low output levels, data to be loaded is applied to either the P1 or P2 inputs of each register stage (A, B, C, and D) with the corresponding preset enable input, PE1 or PE2, high. Presetting, like clearing, is independent of the level of the clock input.

- Serial-In Serial-Out Register

SN5494 . . . J OR W PACKAGE
SN7494 . . . J OR N PACKAGE (TOP VIEW)

A	-	\cup_{16}	P2A
P1B	$\square 2$	15	PE2
P1C	3	14	P2B
P1D	4	13	P2C
$V_{C C}$	5	12	GND
PE1	6	11	P2D
SER		10	CLR
CLK		9	Q_{D}

Transfer of information to the outputs occurs on the positive-going edge of the clock pulse. The proper information must be setup at the R-S inputs of each flip-flop prior to the rising edge of the clock input waveform. The serial input provides this information for the first flip-flop, while the outputs of the subsequent flip-flops provide information for the remaining R-S inputs. The clear input must be at a low level and the internal presets must be inactive (high) when clocking occurs.

PRESET FUNCTION TABLE
(BIT A, TYPICAL OF ALL)

PRESET INPUTS		INTERNAL		
PE1	P1A	PE2	P2A	PRESET A
L	X	L	X	H (inactive)
L	X	X	L	H (inactive)
X	L	L	X	H (inactive)
X	L	X	L	H (inactive)
H	H	X	X	L (active)
X	X	H	H	L (active)

REGISTER FUNCTION TABLE

INTERNAL PRESETS				INPUTS			INTERNAL OUTPUTS			OUTPUT
A	B	C	D	CLEAR	CLOCK	SERIAL	$\mathrm{O}_{\mathbf{A}}$	O_{B}	O_{C}	O_{D}
H	H	H	H	H	X	X	L	L	L	L
L	L	L	L	L	X	X	H	H	H	H
H	H	H	H	L	L	x	$\cap_{\text {A }}$	O_{BO}	O_{CO}	Q_{DO}
L	H	L	H	L	L	X	H	O_{BO}	H	$\mathrm{Q}_{\text {D0 }}$
H	H	H	H	L	\uparrow	H	H	Q_{An}	O_{Bn}	O_{Cn}
H	H	H	H	L	\uparrow	L	L	$\mathrm{O}_{A n}$	O_{Bn}	Q_{Cn}

$H=$ high level (steady state), $L=$ low level (steady state), $X=$ irrelevant, $\uparrow=$ transition from low to high level
$Q_{A O}, Q_{B O}, Q_{C O}, Q_{D O}=$ the level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady-state input conditions were established. $\mathbf{Q}_{A n}, Q_{B n}, Q_{C n}=$ the level of Q_{A}, Q_{B}, or Q_{C}, respectively, before the most-recent \uparrow transition of the clock.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network ground terminal.
2. Input voltage must be zero or positive with respect to network ground terminal.
production data
This document contains information current as of publication date. Products conform to 3-374 specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Texas

logic diagram

TYPES SN5494, SN7494
4-BIT SHIFT REGISTERS

recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN5494			SN7494		UNIT	
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX			
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8			0.8	V	
V_{OH}	High-level output voltage		$\begin{array}{ll} V_{C C}=\mathrm{MIN}, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V}, & \mathrm{IOH}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$	2.4	3.5		2.4	3.5		V	
V_{OL}	Low-level output voltage		$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ \hline \end{array}$		0.2	0.4		0.2	0.4	V	
1	Input current at maximum input voltage		$V_{C C}=M A X, ~ V_{1}=5.5 \mathrm{~V}$			1			1	mA	
$\mathrm{IIH}^{\text {d }}$	High-level input current	Presets 1 and 2	$V_{C C}=M A X, ~ V_{1}=2.4 \mathrm{~V}$			160			160	$\mu \mathrm{A}$	
		Other inputs				40			40		
	Low-level input current	Presets 1 and 2	$V_{C C}=M A X, \quad V_{1}=0.4 \mathrm{~V}$			-6.4			-6.4	mA	
		Other inputs				-1.6			-1.6		
IOS	Short-circuit output current ${ }^{\text {S }}$		$V_{C C}=$ MAX	-20		-57	-18		-57	mA	
ICC	Supply current		$V_{\text {CC }}=$ MAX, See Note 3		35	50		35	58	mA	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\S Not more than one output should be shorted at a time.
NOTE 3: ICC is measured with the outputs open, clear grounded following momentary application of 4.5 V , both preset-enable inputs grounded, and all other inputs at 4.5 V .
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

NOTE 4 See General Information Section for load circuits and voltage waveforms.

