－＇LS56 Performs 50 to 1 Frequency Division （ 5 to 1， 5 to 1，and 10 to 1）
－＇LS57 Performs 60 to 1 Frequency Division （ 6 to 1， 5 to 1，and 10 to 1）
－Available in P or JG package（two P or JG Packages Fit in a Single 16－pin Socket）
－Maximum Clock Frequency 25 MHz Typical

SN54LS56，SN54LS57 ．．．JG PACKAGE
SN74LS56，SN74LS57 ．．．JG OR P PACKAGE
（TOP VIEW）

CLKB	1 1 8	$\square^{\circ} Q_{C}$
VCCL	27	O_{B}
O_{C}	36	CLR
GND－	4	\square CLKA

FOR CHIP CARRIER INFORMATION，CONTACT THE FACTORY．

description

These frequency dividers are particularly useful in generating one second or one hour timing pulses from 50 Hz （European standard frequency）or 60 Hz （United States standard frequency）． 50 to 1 frequency division is accomplished in the＇LS56 by connecting output Q_{A} to input CLKB． 60 to 1 frequency division in the＇LS57 is accomplished in the same way．More univer－ sal capabilities are evidenced by the 25 MHz typical $\mathrm{f}_{\text {max }}$ and the almost limitless frequency division possibilities when used in cascade．Two＇LS56 packages may be interconnected to give frequency division of 2500 to 1,625 to 1,100 to 1 ，etc．Two ＇LS57 packages can be connected to generate frequency divisions of 3600 to 1,1800 to 1,900 to 1 etc．

The＇LS56 and＇LS57 frequency dividers consist of three separate counters，A，B，and C on a single monolithic substrate． The A counter divides by 5 to 1 in the＇LS56 and by 6 to 1 in the＇LS57．The B counter divides by 5 to 1 in both devices and is internally tied to the C counter which divides by 2 to 1 ．The resulting C counter output is 10 to 1 ．Both the＇LS56 and＇LS57 feature a clear pin which is common to all three counters，A, B ，and C ．When the clear pin is low，the counters are enabled． When the clear is high，the counters are disabled and their outputs are set to a low－level．

All three counters，A, B ，and C trigger on the high－to－low transition of the clock input．All output waveforms are symmetrical except for the 5 to 1 outputs（ A and B of the＇LS56 and B of the＇LS57）．See the output waveform drawings below．
input and output waveforms

logic diagram

schematics of inputs and outputs

EQUIVALENT OF
CLK INPUTS

EQUIVALENT OF
CLEAR INPUT
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$			SN54LS'			SN74LS'			UNIT			
		MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX							
$V_{\text {IK }}$					$V_{C C}=$ MIN,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
VOH		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \end{aligned}$	$V_{I H}=2 V,$	$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5	3.4		2.7	3.4		V			
VOL		$V_{\text {CC }}=$ MIN,	$\mathrm{V}_{\text {IH }}=2 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V			
		$V_{\text {IL }}=$ MAX		$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$					0.35	- 0.5				
11	CLKA, CLKB	$V_{C C}=\mathrm{MAX}$		$\mathrm{V}_{1}=5.5 \mathrm{~V}$			0.2			0.2	mA			
	CLR			$\mathrm{V}_{1}=7 \mathrm{~V}$			0.1			0.1				
$\mathrm{I}_{1 \mathrm{H}}$	CLKA, CLKB	$V_{C C}=\mathrm{MAX}, \quad V_{1}=2.7 \mathrm{~V}$	$V_{1}=2.7 \mathrm{~V}$				80			80	$\mu \mathrm{A}$			
	CLR						20			20				
IIL	CLKA, CLKB	$V_{C C}=\mathrm{MAX}$,	$C L R=0 V$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-3.2			-3.2	mA			
	CLR						-0.2			-0.2	mA			
los§		$V_{C C}=$ MAX,	$C L R=0 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-20		-100	-20		-100	mA			
ICC		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	See Note 2			17	30		17	30	mA			

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second. NOTE 2: ICC is measured by applying 4.5 V to the CLR pin with all other inputs grounded and the outputs open.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		'LS56			'LS57			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
$f_{\text {max }}$	CLKA	Q_{A}	$R_{L}=1 \mathrm{k} \Omega$,	$C_{L}=30 \mathrm{pF}$	15	25		15	25		MHz
$f_{\text {max }}$	CLKB	$\mathrm{O}_{\mathrm{B}}, \mathrm{O}_{\mathrm{C}}$			15	25		15	25		MHz
${ }^{\text {t PLH }}$	CLKB	O_{B}				8	15		8	15	ns
tPHL						14	25		14	25	ns
${ }^{\text {tPLH* }}$	CLKB	Q_{C}				18	30		18	30	ns
${ }^{\text {tPHL* }}$						24	35		24	35	ns
tpl	CLKA	Q_{A}				12	20		14	25	ns
tpHL						14	25		18	30	ns
${ }^{\text {tPHL }}$	CLR	O_{A}				17	30		17	30	ns
${ }^{\text {tPHL }}$	CLR	O_{B}				17	30		17	30	ns
${ }^{\text {tPHL }}$	CLR	O_{C}				17	30		17	30	ns

* Times measured from CLKB to output Q_{C} are taken with output Q_{B} unloaded.

NOTE 3: See General Information Section for load circuits and voltage waveforms

