## TYPES SN5495A，SN54L95，SN54LS95B， SN7495A，SN74LS95B 4－BIT PARALLEL－ACCESS SHIFT REGISTERS

| TYPE | TYPICAL MAXIMUM <br> CLOCK FREQUENCY | TYPICAL |
| :---: | :---: | :---: |
| ＇95A | 36 MHz | 195 mW |
| ＇L95 | 5 MHz | 19 mW |
| ＇LS95B | 36 MHz | 65 mW |
| description |  |  |

These 4－bit registers feature parallel and serial inputs， parallel outputs，mode control，and two clock inputs． The registers have three modes of operation：

> Parallel (broadside) load
> Shift right (the direction $Q_{A}$ toward $Q_{D}$ )
> Shift left (the direction $Q_{D}$ toward $Q_{A}$ )

Parallel loading is accomplished by applying the four bits of data and taking the mode control input high． The data is loaded into the associated flip－flops and appears at the outputs after the high－to－low transition of the clock－2 input．During loading，the entry of serial data is inhibited．

Shift right is accomplished on the high－to－low transi－ tion of clock 1 when the mode control is low；shift left is accomplished on the high－to－low transition of clock 2 when the mode control is high by connecting the output of each flip－flop to the parallel input of the previous flip－flop（ $Q_{D}$ to input $C$ ，etc．）and serial data is entered at input $D$ ．The clock input may be applied commonly to clock 1 and clock 2 if both modes can be clocked from the same source．Changes at the mode control input should normally be made while both clock inputs are low；however，conditions described in the last three lines of the function table will also ensure that register contents are protected．

| INPUTS |  |  |  |  |  |  |  | OUTPUTS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MODE | CLO | CKS | SERIAL |  | PARA | LLEL |  |  |  |  |  |
| CONTROL | 2 （L） | 1 （R） | SERIAL | A | B | C | D | $\mathrm{O}_{\mathrm{A}}$ | $\mathrm{O}_{\mathbf{B}}$ | $0_{c}$ | OD |
| H | H | X | X | X | $\times$ | X | X | $\mathrm{Q}_{\text {A0 }}$ | $\mathrm{O}_{\mathrm{BO}}$ | $\mathrm{a}_{\mathrm{CO}}$ | $\mathrm{O}_{\mathrm{DO}}$ |
| H | $\downarrow$ | $x$ | x | a | $b$ | c | d | a | b | c | d |
| H | $\downarrow$ | x | $x$ | $\mathrm{O}_{\mathrm{B}}{ }^{\dagger}$ | $\mathrm{o}_{C^{+}}{ }^{\text {＋}}$ | $\mathrm{O}_{\mathrm{D}^{\dagger}}$ | d | $\mathrm{O}_{\mathrm{Bn}}$ | $\mathrm{O}_{\mathrm{Cn}}$ | $Q_{\text {D }}$ | d |
| L | L | H | X | X | $x$ | $x$ | $x$ | $\mathrm{O}_{\text {AO }}$ | $\mathrm{Q}_{\mathrm{BO}}$ | $\mathrm{a}_{\mathrm{C} 0}$ | $Q_{\text {D0 }}$ |
| L | x | $\downarrow$ | H | $x$ | $x$ | $x$ | $x$ | H | $Q_{A n}$ | $\mathrm{a}_{\mathrm{Bn}}$ | $\mathrm{Q}_{\mathrm{Cn}}$ |
| L | X | $\downarrow$ | L | X | $x$ | $x$ | x | L | $\mathrm{Q}_{\text {An }}$ | $\mathrm{a}_{\mathrm{Bn}}$ | $\mathrm{O}_{\mathrm{Cn}}$ |
| $\uparrow$ | L | L | X | $x$ | $x$ | X | x | $\mathrm{O}_{\text {A0 }}$ | $\mathrm{O}_{\mathrm{BO}}$ | $\mathrm{a}_{\mathrm{Co}}$ | $\mathrm{a}_{\text {Do }}$ |
| $\downarrow$ | L | L | x | $x$ | X | X | x | $\mathrm{O}_{\text {A0 }}$ | $\mathrm{O}_{\text {B0 }}$ | $\mathrm{a}_{\mathrm{Co}}$ | $\mathrm{Q}_{\text {Do }}$ |
| $\downarrow$ | L | H | $x$ | $x$ | X | $x$ | $x$ | $\mathrm{Q}_{\text {AO }}$ | $\mathrm{O}_{\mathrm{BO}}$ | $\mathrm{a}_{\mathrm{Co}}$ | $\mathrm{a}_{\text {DO }}$ |
| $\dagger$ | H | L | $x$ | $x$ | $x$ | $x$ | $x$ | $\mathrm{Q}_{\text {A0 }}$ | $\mathrm{Q}_{80}$ | $\mathrm{a}_{\text {co }}$ | $Q_{\text {DO }}$ |
| $\uparrow$ | H | H | X | X | X | X | X | $\mathrm{Q}_{\text {AO }}$ | $\mathrm{Q}_{\mathrm{BO}}$ | $\mathrm{a}_{\mathrm{CO}}$ | QD0 |

[^0]NC－No internal connection

## TYPES SN5495A，SN54L95，SN54LS95B，SN7495A，SN74LS95B 4－BIT PARALLEL－ACCESS SHIFT REGISTERS

## logic diagrams


schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

|  | SN54 ${ }^{\circ}$ | SN54L' | SN54LS' | SN74' | SN74LS' | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply voltage, $\mathrm{V}_{\text {CC }}$ (see Note 1) | 7 | 8 | 7 | 7 | 7 | V |
| Input voltage (see Note 2) | 5.5 | 5.5 | 7 | 5.5 | 7 | V |
| Interemitter voltage (see Note 3) | 5.5 | 5.5 |  | 5.5 |  | V |
| Operating free-air temperature range | -55 to 125 |  |  | 0 to 70 |  | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature range | -65 to 150 |  |  | -65 to 150 |  | ${ }^{\circ} \mathrm{C}$ |

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. For the 'L95, input voltages must be zero or positive with respect to network ground terminal.
3. This is the voltage between two emitters of a multiple-emitter input transistor. This rating applies between the clock-2 input and the mode control input of the '95A and 'L95.

TYPES SN5495A, SN7495A

## 4-BIT PARALLEL- SHIFT REGISTERS

recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  |  | TEST CONDITIONS ${ }^{\dagger}$ | SN5495A |  |  | SN7495A |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP $\ddagger$ | MAX | MIN | TYP $\ddagger$ | MAX |  |
| $V_{1 H}$ | High-level input voltage |  |  |  | 2 |  |  | 2 |  |  | V |
| $V_{\text {IL }}$ | Low-level input voltage |  |  |  |  | 0.8 |  |  | 0.8 | V |
| $V_{\text {IK }}$ | Input clamp voltage |  | $\mathrm{V}_{C C}=\mathrm{MIN}, \quad \_{1}=-12 \mathrm{~mA}$ |  |  | -1.5 |  |  | -1.5 | V |
| $\mathrm{VOH}^{\text {O }}$ | High-level output voltage |  | $\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{array}$ | 2.4 | 3.4 |  | 2.4 | 3.4 |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Low-level output voltage |  | $\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$ |  | 0.2 | 0.4 |  | 0.2 | 0.4 | V |
| $1 /$ | Input current at maximum input voltage |  | $V_{C C}=M A X, \quad V_{1}=5.5 \mathrm{~V}$ |  |  | 1 |  |  | 1 | mA |
| $1 / \mathrm{H}$ | High-level input current | Serial, A, B, C, D, Clock 1 or 2 | $V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$ |  |  | 40 |  |  | 40 | $\mu \mathrm{A}$ |
|  |  | Mode control |  |  |  | 80 |  |  | 80 |  |
| IIL | Low-level input current | Serial, A, B, C, D, Clock 1 or 2 | $V_{C C}=M A X, \quad V_{1}=0.4 \mathrm{~V}$ |  |  | -1.6 |  |  | -1.6 | mA |
|  |  | Mode control |  |  |  | -3.2 |  |  | -3.2 |  |
| Ios | Short-circuit output current § |  | $V_{C C}=$ MAX | -18 |  | -57 | -18 |  | -57 | mA |
| ${ }^{\text {ICC }}$ | Supply current |  | $V_{\text {CC }}=$ MAX, See Note 4 |  | 39 | 63 |  | 39 | 63 | mA |

$\dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
$\ddagger$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 4: ICC is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5 V ; and a momentary 3 V , then ground, applied to both clock inputs.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {max }}$ Maximum clock frequency | $C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=400 \Omega$ <br> See Figure 1 | 25 | 36 |  | M Hz |
| tPLH Propagation delay time, low-to-high-level output from clock |  |  | 18 | 27 | ns |
| tPHL Propagation delay time, high-to-low-level output from clock |  |  | 21 | 32 | ns |

recommended operating conditions

|  |  |  | SN54L95 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | NOM | MAX |  |
| $\mathrm{V}_{\text {cc }}$ | Supply voltage |  | 4.5 | 5 | 5.5 | V |
| $V_{\text {IH }}$ | High-level input voltage |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low-level input voltage |  |  |  | 0.7 | V |
| ${ }^{\text {I OH}}$ | High-level output current |  |  |  | -0.1 | mA |
| loL | Low-level output current |  |  |  | 2 | mA |
| $\mathrm{f}_{\text {clock }}$ | Clock frequency |  | 0 |  | 3 | MHz |
| $t_{\text {w }}$ (clock) | Width of clock pulse (See Figure 1) |  | 200 |  |  | ns |
| $\mathrm{t}_{\text {su }}$ | Setup time (See Figure 1) | High-level data | 100 |  |  | ns |
|  |  | Low-level data | 120 |  |  | ns |
| $t_{h}$ | Hold time, high-level or low-level data (See Figure 1) |  | 0 |  |  | ns |
| tenable 1 | Time to enable clock 1 (See Figure 2) |  | 225 |  |  | ns |
| tenable 2 | Time to enable clock 2 (See Figure 2) |  | 200 |  |  | ns |
| $\mathrm{t}_{\text {inhibit } 1}$ | Time to inhibit clock 1 (See Figure 2) |  | 100 |  |  | ns |
| $\mathrm{t}_{\text {inhibit }} 2$ | Time to inhibit clock 2 (See Figure 2) |  | 0 |  |  | ns |
| $\mathrm{T}_{\text {A }}$ | Operating free-air temperature |  | -55 |  | 125 | ${ }^{\circ} \mathrm{C}$ |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS $\dagger$ |  |  |  | SN54L95 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP $\ddagger$ MAX |  |
|  | $\mathrm{V}_{\mathrm{OH}}$ |  |  |  |  | $V_{C C}=$ MIN, | $\mathrm{V}_{1 H}=2 \mathrm{~V}$, | $\mathrm{V}_{\text {IL }}=0.7 \mathrm{~V}$, | $1 \mathrm{OH}=-0.1 \mathrm{~mA}$ | 2.4 | 3.3 | V |
|  | $\mathrm{V}_{\mathrm{OL}}$ | $\mathrm{V}_{C C}=$ MIN, | $\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$, | $\mathrm{V}_{\text {IL }}=0.7 \mathrm{~V}$. | $\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$ |  | $0.15 \quad 0.3$ | V |
| 11 | Serial, A, B, C, D, <br> Clock 1 or 2 | $V_{C C}=$ MAX . | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 0.1 | mA |
|  | Mode control |  |  |  |  |  | 0.2 |  |
| $\mathrm{IIH}^{\text {H }}$ | Serial, A, B, C, D, Clock 1 or 2 | $\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, | $\mathrm{V}_{1}=2.4 \mathrm{~V}$ |  |  |  | 10 | $\mu \mathrm{A}$ |
|  | Mode control |  |  |  |  |  | 20 |  |
| IIL | Serial, A, B, C, D, Clock 1 or 2 | $V_{C C}=$ MAX, | $V_{\text {II }}=0.3 \mathrm{~V}$ |  |  | -0.18 |  | mA |
|  | Mode control |  |  |  |  |  | -0.36 |  |
|  | Ios§ | $\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$ | See Note 4 |  |  | -3 | -15 | mA |
|  | ICC | $\mathrm{V}_{\text {CC }}=\mathrm{MAX}$, |  |  |  |  | $3.8 \quad 9$ | mA |

$\dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at $V_{C C}=5 \mathrm{~V} \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time.
NOTE 4: ICC is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5 V ; and a momentary 3 V , then ground, applied to both clock inputs.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

| PARAMETER | FROM <br> (INPUT) | TO <br> (OUTPUT) | TEST CONDITIONS | MIN TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {max }}$ | Any | Any | $R_{\mathrm{L}}=4 \mathrm{k} \Omega$ <br> See Figure 1 | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ | 3 | 5 |
| $\mathrm{t}_{\mathrm{PLH}}$ |  |  |  | 115 | 200 | ns |
| $\mathrm{t}_{\mathrm{PHL}}$ |  |  |  | 125 | 200 | ns |

## TYPES SN54LS95B, SN74LS95B 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

recommended operating conditions

|  | SN54LS95B |  |  | SN74LS95B |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN | NOM | MAX | MIN | NOM | MAX |  |
| Supply voltage, $\mathrm{V}_{\text {CC }}$ | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| High-level output current, ${ }^{\text {OH}}$ |  |  | -400 |  |  | -400 | $\mu \mathrm{A}$ |
| Low-level output current, IOL |  |  | 4 |  |  | 8 | mA |
| Clock frequency, flock | 0 |  | 25 | 0 |  | 25 | MHz |
| Width of clock pulse, $\mathrm{t}_{\text {w }}$ (clock) ( (see Figure 1) | 20 |  |  | 20 |  |  | ns |
| Setup time, high-level or low-level data, $\mathrm{t}_{\text {su }}$ (see Figure 1) | 20 |  |  | 20 |  |  | ns |
| Hold time, high-level or low-level data, $\mathrm{t}_{\mathrm{h}}$ (see Figure 1) | 20 |  |  | 10 |  |  | ns |
| Time to enable clock 1, tenable 1 (see Figure 2) | 20 |  |  | 20 |  |  | ns |
| Time to enable clock 2, tenable 2 (see Figure 2) | 20 |  |  | 20 |  |  | ns |
| Time to inhibit clock 1, $\mathrm{t}_{\text {inhibit }} 1$ (see Figure 2) | 20 |  |  | 20 |  |  | ns |
| Time to inhibit clock 2, $\mathrm{t}_{\text {inhibit }} 2$ (see Figure 2) | 20 |  |  | 20 |  |  | ns |
| Operating free-air temperature, $\mathrm{T}_{\mathrm{A}}$ | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER | TEST CONDITIONS ${ }^{\dagger}$ |  | SN54LS95B |  | SN74LS95B |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP $\ddagger$ MAX | MIN | TYP $\ddagger$ | MAX |  |
| $\mathrm{V}_{1} \mathrm{H}$ High-level input voltage |  |  | 2 |  | 2 |  |  | V |
| $V_{\text {IL }}$ Low-level input voltage |  |  |  | 0.7 |  |  | 0.8 | V |
| $V_{\text {IK }}$ Input clamp voltage | $\mathrm{V}_{\mathrm{CC}}=$ MIN, | $\mathrm{I}^{\prime}=-18 \mathrm{~mA}$ |  | -1.5 |  |  | -1.5 | V |
| $\mathrm{V}_{\mathrm{OH}}$ High-level output voltage | $\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=V_{I L} \text { max }, \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$ | 2.5 | 3.4 | 2.7 | 3.4 |  | V |
| VOL Low-level output voltage | $\begin{aligned} & V_{C C}=M I N \\ & V_{I H}=2 V \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$ | ${ }^{1} \mathrm{OL}=4 \mathrm{~mA}$ |  | 0.250 .4 |  | 0.25 | 0.4 | V |
|  |  | $\mathrm{l}^{\prime} \mathrm{OL}=8 \mathrm{~mA}$ |  |  |  | 0.35 | 0.5 |  |
| IIInput current at <br> maximum input voltage | $V_{C C}=$ MAX . | $V_{1}=7 \mathrm{~V}$ |  | 0.1 |  |  | 0.1 | mA |
| IIHHigh-level <br> input current | $V_{C C}=\mathrm{MAX}$, | $V_{1}=2.7 \mathrm{~V}$ |  | 20 |  |  | 20 | $\mu \mathrm{A}$ |
| IIL $\begin{array}{l}\text { Low-level } \\ \text { input current }\end{array}$ | $V_{C C}=$ MAX . | $V_{1}=0.4 \mathrm{~V}$ |  | -0.4 |  |  | -0.4 | mA |
| IOS Short-circuit output current ${ }^{\text {§ }}$ | $V_{C C}=$ MAX |  | -20 | -100 | -20 |  | -100 | mA |
| ICC Supply current | $\mathrm{V}_{\text {CC }}=$ MAX, | See Note 4 |  | 13.21 |  | 13 | 21 | mA |

$\dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
$\ddagger$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTE 4: ICC is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5 V ; and a momentary 3 V , then ground, applied to both clock inputs.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {max }}$ Maximum clock frequency | $C_{L}=15 \mathrm{pF}, \quad R_{L}=2 \mathrm{k} \Omega,$ <br> See Figure 1 | 25 | 36 |  | MHz |
| ${ }^{\text {t PLH }}$ Propagation delay time, low-to-high-level output from clock |  |  | 18 | 27 | ns |
| tPHL Propagation delay time, high-to-low-level output from clock |  |  | 21 | 32 | ns |

## PARAMETER MEASUREMENT INFORMATION



LOAD CIRCUIT


NOTES: A. Input pulses are supplied by a generator having the folfowing characteristics: $t_{r} \leqslant 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 10 \mathrm{~ns}$, and $Z_{\text {out }} \approx 50 \Omega$. For the data pulse generator, $\operatorname{PRR}=500 \mathrm{kHz}$; for the clock pulse generator, $\operatorname{PRR}=1 \mathrm{MHz}$. When testing $\mathrm{f}_{\text {max, }}$ vary PRR. For '95A
 $t_{w}($ clock $) \geqslant 15 \mathrm{~ns}$
B. $\mathrm{C}_{\mathrm{L}}$ includes probe and jig capacitance.
C. C1 ( 30 pF ) is applicable for testing 'L95.
D. All diodes are 1 N3064 equivalent.
E. For ${ }^{\prime} 95 \mathrm{~A}, \mathrm{~V}_{\mathrm{ref}}=1.5 \mathrm{~V}$ : for ${ }^{\prime} \mathrm{L} 95$ and ${ }^{\prime} \mathrm{LS} 95 \mathrm{~B}, \mathrm{~V}_{\mathrm{ref}}=1.3 \mathrm{~V}$.

VOLTAGE WAVEFORMS
FIGURE 1-SWITCHING TIMES

TYPES SN5495A，SN54L95，SN54LS95B，SN7495A，SN74LS95B
4－BIT PARALLEL－ACCESS SHIFT REGISTERS

## PARAMETER MEASUREMENT INFORMATION



NOTES：$A$ ．Input $A$ is at a low level．
B．For＇95A，$V_{\text {ref }}=1.5 \mathrm{~V}$ ；for＇L95 and＇LS95B，$V_{\text {ref }}=1.3 \mathrm{~V}$ ．

VOLTAGE WAVEFORMS
FIGURE 2－CLOCK ENABLE／INHIBIT TIMES


[^0]:    ${ }^{\dagger}$ Shifting left requires external connection of $Q_{B}$ to $A, O_{C}$ to $B$ ，and $Q_{D}$ to $C$ ．Serial data is entered at input $D$ ． $\mathrm{H}=$ high level（steady state）， $\mathrm{L}=$ low level（steady state）， $\mathrm{X}=$ irrelevant（any input，including transitions）
    $\downarrow=$ transition from high to low level，$\uparrow=$ transition from low to high level
    $a, b, c, d=$ the level of stead $y$－state input at inputs $A, B, C$ ，or $D$ ，respectively
    $\mathrm{a}_{A O}, \mathrm{a}_{\mathrm{BO}}, \mathrm{O}_{\mathrm{CO}}, \mathrm{a}_{\mathrm{DO}}=$ the level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{a}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$ ，or $\mathrm{Q}_{\mathrm{D}}$ ，respectively，before the indicated steady－state input conditions were established． $\alpha_{A n}, Q_{B n}, Q_{C n}, Q_{D_{n}}=$ the level of $\alpha_{A}, Q_{B}, Q_{C}$ ，or $Q_{D}$ ，respectively，before the most－recent $\downarrow$ transition of the clock．

