- Full-Carry Look-Ahead across the Four Bits
- Systems Achieve Partial Look-Ahead Performance with the Economy of Ripple Carry
- SN54283/SN74283 and SN54LS283/SN74LS283 Are Recommended For New Designs as They Feature Supply Voltage and Ground on Corner Pins to Simplify Board Layout

	TYPICAL ADD TIMES		
TYPICAL POWER			
TYPE	TWO	TWO	TISSIPATION PER
	8-BIT	16-BIT	DISSIPIT ADDER
	WORDS	WORDS	4-BIT
'83A	23 ns	43 ns	310 mW
'LS83A	25 ns	45 ns	95 mW

description

These improved full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits generating the carry term in ten nanoseconds typically. This provides the system designer with partial look-ahead performance at the economy and reduced package count of a ripple-carry implementation.

The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.

Designed for medium-speed applications, the circuits utilize transistor-transistor logic that is compatible with most other TTL families and other saturated low-level logic families.

Series 54 and 54LS circuits are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, and Series 74 and 74 LS circuits are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN5483A, SN54LS83A . . . J OR W PACKAGE
SN7483A . . . J OR N PACKAGE
SN74LS83A . . . D. J OR N PACKAGE
(TOP VIEW)

A4 1	\bigcirc_{16}	B4
$\Sigma 3 \square_{2}$	15	$\Sigma 4$
A3 \square_{3}	14	C4
B3 4	13	C0
$\mathrm{V}_{\text {CC }} \square_{5}$	12	GND
$\Sigma 2 \square$	11	B1
B2 7	10	A1
A2 8)	V1

SN54LS83A ... FK PACKAGE SN74LS83A ... FN PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE									
INPUT				OUTPUT					
$\mathrm{A} 1 / \mathrm{A}$				51	22	$\mathrm{C2} / \mathrm{c}$	21/2	$\sqrt{52}$	$\mathrm{C} 2 / \mathrm{c} 4$
L	L	L	L	L	L	L	H	L	L
H	L	L	L	H	L	L	L	H	L
L	H	L	L	H	L	L	L	H	L
H	H	L	L	L	H	L	H	H	L
L	L	H	L	L	H	L	H	H	L
H	L	H	L	H	H	L	L	L	H
L	H	H	L	H	H	L	L	L	H
H	H	H	L	L	L	H	H	L	H
L	L	L	H	L	H	L	H	H	L
H	L	L	H	H	H	L	L	L	H
L	H	L	H	H	H	L	L	L	H
H	H	L	H	L	L	H	H	L	H
L	L	H	H	L	L	H	H	L	H
H	L	H	H	H	L	H	L	H	H
L	H	H	H	H	L	H	L	H	H
H	H	H	H	L	H	H	H	H	H

$H=$ high level, L = low level
NOTE: Input conditions at A1, B1, A2, B2, and CO are used to determine outputs $\Sigma 1$ and $\Sigma 2$ and the value of the internal carry C2. The values at $C 2, A 3, B 3, A 4$, and $B 4$ are then used to determine outputs $\Sigma 3, \Sigma 4$, and C 4 .

TEXAS
 INSTRUMENTS

POST OFFICE BOX 225012 - DALLAS, TEXAS 75265
schematics of inputs and outputs

logic diagram

Pin numbers shown on logic notation are for D, J or N packages
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor. This rating applies for the ' $83 A$ only between the following pairs: A1 and B1, A2 and B2, A3 and B3, A4 and B4.

TYPES SN5483A, SN7483A
4-BIT BINARY FULL ADDERS WITH FAST CARRY
recommended operating conditions

			N5483			N7483		
		MIN	NOM	MAX	MIN	NOM	MAX	NIT
Supply Voltage, V_{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH	Any output except C4	-800					$\cdots 800$	$\mu \mathrm{A}$
	Output C4			-400			-400	
Low-level output current, IOL	Any output except C4			16			16	
	Output C4			8			8	mA
Operating free-air temperature, $\mathrm{T}_{\text {A }}$		-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$		SN5483A			SN7483A			UNIT		
			MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX					
$V_{\text {IH }}$	High-level input voltage						2			2			V
$V_{\text {IL }}$	Low-level input voltage						0.8			0.8	V		
$V_{\text {IK }}$	Input clamp voltage		$V_{C C}=$ MIN,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5			-1.5	V		
$\mathrm{VOH}^{\text {OH}}$	High-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ & \mathrm{IOH}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	2.4	3.4		2.4	3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & V_{I H}=2 V, \\ & I_{O L}=M A X \end{aligned}$		0.2	0.4		0.2	0.4	v		
1	Input current at maximum input voltage		$V_{C C}=$ MAX,	$V_{1}=5.5 \mathrm{~V}$			1			1	mA		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$V_{C C}=$ MAX ,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$		
IIL	Low-level input current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA		
Ios	Short-circuit output current \S	Any output except C4	$V_{C C}=\operatorname{MAX}$		-20		-55	-18		-55	mA		
		Output C4			-20		-70	-18		-70			
${ }^{1} \mathrm{Cc}$	Supply current		$V_{C C}=M A X,$ Outputs open	All B low, other inputs at 4.5 V	56				56		mA		
			All inputs at $4.5 \mathrm{~V}$		66	99		66	110				

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \vee, T_{A}=25^{\circ} \mathrm{C}$.
§Only one output should be shorted at a time.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {¢ }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	CO	Any ${ }^{\text {L }}$	$C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=400 \Omega,$ See Note 3	14	21	
tPHL				12	21	ns
tPLH	A_{i} or B_{i}	Σ_{i}		16	24	ns
tPHL				16	24	
tPLH	C0	C4	$C_{L}=15 \mathrm{pF}, \quad R_{L}=780 \Omega,$ See Note 3	9	14	ns
tPHL				11	16	
tPLH	A_{i} or B_{i}	C4		9	14	ns
tPHL				11	16	

$\|_{t_{\text {PLH }}} \equiv$ Propagation delay time, low-to-high-level output
${ }^{\text {t PHL }}=$ Propagation delay time, high-to-low-level output
NOTE 3: See General Information Section for load circuits and voltage waveforms.
recommended operating conditions

	SN54LS83A			SN74LS83A			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, 1 OH			-400			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4			8	mA
Operating free-air temperature, T_{A}	-55		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
§ Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER ${ }^{\text {¢ }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Co	Any L	$C_{L}=15 \mathrm{pF} . \quad R_{L}=2 \mathrm{k} \Omega,$ See Note 4		16	24	ns
${ }_{\text {tPHL }}$					15	24	
tPLH	A_{i} or B_{i}	$\Sigma \Sigma_{i}$			15	24	ns
${ }^{\text {TPHL }}$					15	24	
${ }^{\text {tPLH }}$	CO	C4			11	17	
tPHL					15	22	
tPLH	$\mathrm{A}_{\boldsymbol{i}}$ or $\mathrm{B}_{\boldsymbol{i}}$	C4			11	17	ns
tPHL					12	17	

[^0]
[^0]: ItPLH $=$ Propagation delay time, low to high-level output
 tPHL \equiv Propagation delay time, high-to-low-level output
 Note 4: See General Information Section for load circuits and voltage waveforms.

