TYPES SN54167, SN74167 SYNCHRONOUS DECADE RATE MULTIPLIERS

- Perform Fixed-Rate or Variable-Rate Frequency Division
- For Applications in Arithmetic, Radar, Digital-to-Analog (D/A), Analog-to-Digital (A/D), and other Conversion Operations
- Typical Maximum Clock Frequency . . . 32 MHz

SN54167 . . . J OR W PACKAGE
SN74167 . . . J OR N PACKAGE (TOP VIEW)

These monolithic, fully synchronous, programmable counters utilize Series 54/74 TTL circuitry to achieve 32-megahertz typical maximum operating frequencies. These decade counters feature buffered clock, clear, enable and set-to-nine inputs to control the operation of the counter, and a strobe input to enable or inhibit the rate input/decoding AND-ORINVERT gates. The outputs have additional gating for cascading and transferring unity-count rates.

The counter is enabled when the clear, strobe set-to-nine, and enable inputs are low. With the counter enabled, the output frequency is equal to the input frequency multiplied by the rate input M and divided by 10 , ie.:

$$
\begin{aligned}
& f_{\text {out }}=\frac{M \cdot f_{\text {in }}}{10} \\
& \text { where: } M=B 3 \cdot 2^{3}+B 2 \cdot 2^{2}+B 1 \cdot 2^{1}+B 0 \cdot 2^{0} \text { for decimal zero through nine. }
\end{aligned}
$$ the Y output when the rate input/decoding gates are inhibited by the strobe. The unity/cascade input may also be used as a control for the Y output.

All of the inputs of these counters are diode-clamped, and each input, except the clock input, represents one normalized Series 54/74 load. The buffered clock input, used with the strobe gate, is only two Series 54/74 loads. Full fan out to 10 Series 54/74 loads is available from each of the output. These devices are completely compatible with most TTL and DTL families. Typical dissipation is 270 milliwatts. The SN54167 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, and the SN74167 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

POST OFFICE BOX 225012 - DALLAS. TEXAS 75265

TYPES SN54167, SN74167
 SYNCHRONOUS DECADE RATE MULTIPLIERS

								OUTPUTS			NOTES	
INPUTS												
CLEAR	ENABLE	STROBE	$\left\|\right\|$			NUMBER OF CLOCK PULSES	UNITYI CASCADE	LOGIC LEVEL OR NUMBER OF PULSES				
						Y		Z	ENABLE			
H	\times	H	X	X	$\times \times$		\times	H	L	H	H	B
L	L	L	L	L	L L	10	H	L	H	1	C	
L	L	L	L	L	L H	10	H	1	1	1	C	
L	L	L	L	L	H L	10	H	2	2	1	c	
L	L	L	L	L	H H	10	H	3	3	1	C	
L	L	L	L	H	L L	10	H	4	4	1	C	
L	L	L	L'	H	L H	10	H	5	5	1	C	
L	L	L	L	H	H L	10	H	6	6	1	C	
L	L	L	L	H	H H	10	H	7	7	1	c	
L	L	L	H	L	L L	10	H	8	8	1	C	
L	L	L	H	L	L H	10	H	9	9	1	C	
L	L	L	H	L.	H L	10	H	8	8	1	C, D	
L	L	L	H	L	H H	10	H	9	9	1	C, D	
L	L	L	H	H	L L	10	H	8	8	1	C, D	
L	L	L	H	H	L H	10	H	9	9	1	C, D	
L	L	L	H	H	H L	10	H	8	8	1	C, D	
L	L	L	H	H	H H	10	H	9	9	1	C, D	
L	L	L	H	L	L H	10	L	H	9	1	E	

NOTES: A. $H=$ high level, $L=$ low level, $X=$ irrelevant. All remaining entries are numeric counts.
This is a simplified illustration of the clear function. The states of clock and strobe can affect the logic level of Y and Z. A low unity/cascade will cause output Y to remain high.
C. Each rate illustrated assumes a constant value at rate inputs; however, these illustrations in no way prohibit variable-rate inputs.
D. These input conditions exceed the range of the decimal rate inputs.
E. Unity/cascade can be used to inhibit output Y.
schematics of inputs and outputs

logic diagram

absolute maximum ratings over operating free－air temperature range（unless otherwise noted）

NOTE 1：Voltage values are with respect to network ground terminal．
recommended operating conditions

NOTE 2：$t_{\text {w }}$（clock）is the interval in which the clock is high．$t_{c p}$ is the total clock cycle starting with a negative transition．See Figure 1 on SN5497，SN7497 data sheet．
electrical characteristics over recommended operating free－air temperature range（unless otherwise noted）

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP \ddagger MAX	UNIT
High－level input voltage			2		V
Low－level input voltage				0.8	V
Input clamp voltage		$V_{C C}=$ MIN，$\quad I_{1}=-12 \mathrm{~mA}$		－1．5	V
High－level output voltage		$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=2 \mathrm{~V}, \\ V_{I L}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{array}$	2.4	3.4	V
Low－level output voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{I H}=2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{array}$		0.20 .4	V
Input current at maximum input voltage		$V_{C C}=M A X, \quad V_{1}=5.5 \mathrm{~V}$		1	mA
High－level input current	clock input	$V_{C C}=M A X, \quad V_{1}=2.4 \mathrm{~V}$		80	$\mu \mathrm{A}$
	other inputs			40	
Low－level input current	clock inputs	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.4 \mathrm{~V}$		－3．2	mA
	other inputs			－1．6	
Short circuit output current \S		$V_{C C}=$ MAX	－18	－55	mA
Supply current，output high		$V_{C C}=M A X, \quad$ See Note 3		43	mA
Supply current，output low		$V_{C C}=$ MAX，See Note 4		$65 \quad 99$	mA

NOTES：3．${ }^{1} \mathrm{CCH}$ is measured with outputs open and all inputs low．
4．ICCL is measured with outputs open and all inputs high except the set－to－nine input which is low．
\dagger For test conditions shown as MIN or MAX，use the appropriate value specified under recommended operating conditions for the applicable device type．
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．
§ Not more than one output should be shorted at a time．

TYPES SN54167, SN74167 SYNCHRONOUS DECADE RATE MULTIPLIERS
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$I_{f_{\text {max }}}$ is maximum clock frequency.
${ }^{\text {tPLH}}$ L H is propagation delay time, low-to-high-level output.
tPHL is propagation delay time, high-to-low-level output.
NOTE 5: Load circuit, voltage waveforms, and input conditions for measuring switching characteristics are the same as those for the SN5497 and SN7497.

SYNCHRONOUS DECADE RATE MULTIPLIERS

TYPICAL APPLICATION DATA

TEXAS
INSTRUMENTS

